[摘 要] 文章介绍了高压电气设备绝缘在线监测技术的发展,并对绝缘在线监测技术所监测的量进行了一定的介绍,针对不同类型的设备还作了相应绝缘在线监测的分析。通过开展高压电气设备的绝缘在线监测工作将高压电气设备状态检修开展得更好。最后在文章末尾还对在线监测技术开展中所遇到了问题进行了一定的讨论,需要在今后的实际工作中进行解决。
1 前言
电力系统的供电可靠性关系到国计民生,如何有效地保障电力系统的安全、可靠运行一直是电力部门的一个重要课题,而高压设备的安全运行是整个系统安全运行的基础。高压电气设备在电网中运行时,如果其内部存在因制造不良、老化以及外力破坏造成的绝缘缺陷,会发生影响设备和电网安全运行的绝缘事故。因此,在设备投运后,传统的做法是定期停电进行预防性试验和检修,以便及时检测出设备内部的绝缘缺陷,防止发生绝缘事故。随着国民经济的发展,社会对电力供应的可靠性要求越来越高,电力系统也逐渐发展壮大,传统的定期停电进行预防性试验的做法已不能满足电网高可靠性的要求。
随着高压电气设备绝缘可靠性的提高,以及电网可靠性的要求,科学技术的发展,逐渐提出了对高压电气设备采用状态检修的检修方式,得到业内人士的欢迎,但由于初期人们对状态检修的认识不够全面,误以在线监测作为状态检修的唯一基础,使得状态检修并未能真正开展起来,近几年传感器技术和信号处理技术的不断完善,使得在线监测技术在各个供电系统中得到了广泛的应用,为状态检修工作起到了有力的补充作用。
我局所辖变电站较多,电压等级从10kV到500kV均覆盖,高压电气设备的数量很多,要按照常规的停电预防性试验来检查高压电气设备的绝缘情况基本上不能在规定的时间内将所有管辖设备的绝缘状况通过预防性试验方法来进行检查,而且有可能发生在两个试验周期间隔内发生电气设备绝缘老化而危及电网稳定运行的情况。所以在线监测技术的开展显得非常重要,现阶段我局针对部分断路器、电容型电力设备、避雷器等设备开展了在线监测的试运行。
2 高压电气设备绝缘在线监测技术研究的发展概况
国外许多电力公司从上个世纪70年代就开始研究并推广应用变电设备在线监测技术,主要目的就是减少停电预防性试验的时间和次数,提高供电可靠性。但当时的设备简陋,测试手段简单,水平较低。随着计算机技术的飞速发展,在线监测设备产品不断更新完善,在线监测技术水平不断提高。到目前为止,许多国家已广泛使用在线监测技术手段。绝缘在线监测技术的发展大体经历了3个阶段。
(1)带电测试阶段。这一阶段起始于70年代左右。当时人们仅仅是为了不停电而对电气设备的某些绝缘参数(如泄露电流)进行直接测量。设备简单,测试项目少,灵敏度较差。
(2)从80年代开始,出现各种专用的带电测试仪器,使在线监测技术从传统的模拟量测试走向数字化测量,摆脱将仪器直接接入测试回路的传统测量模式,取而代之的是使用传感器将被测量的参数直接转换成电器信号。
(3)从90年代开始,随着计算机技术的推广使用,出现以计算机处理技术为核心的微机多功能绝缘在线监测系统。利用计算机技术、传感技术和数字波形采集与处理技术,实现更多的绝缘参数在线监测。这种在线监测信息量大、处理速度快,可以对监测参数实时显示、储存、打印、远传和越线报警,实现了绝缘在线监测的自动化,代表了当今绝缘在线监测的发展方向。到目前为止,大量的在线监测的技术已经在电力系统设备缺陷检测中得到广泛应用,并有了一定的经验。如变压器油在线色谱分析、电气设备的红外测温技术等已经非常成熟,并在检测设备的绝缘性能中发挥了重要的作。
在国内,在线监测技术的开发与应用始于上世纪80年代。由于受当时整体技术水平的限制,如电子元件的可靠性不高,计算机应用刚刚起步,当时的在线监测技术水平较低。到2000年后,随着在线监测技术的不断成熟及客观的需要,在线监测技术又开始重新被大家所重视,目前,在国内很多地区的供电企业都开展了这项工作。
3 基本原理
3.1检测对象及参数
高压电气设备绝缘在线监测技术是在电气设备处于运行状态中,利用其工作电压来监测绝缘的各种特征参数。因此,能真实的反映电气设备绝缘的运行工况,从而对绝缘状况作出比较准确的判断。在线监测技术可以根据变电站中不同电气设备进行监测,检测其介质损耗值、电容量、泄漏电流、绝缘电阻、母线电压和三相不平衡信号等电气参数。随着在线监测技术的不断发展其监测的电气量也不断增加,我们可以根据需要检测所需的电气量。
3.2在线监测的一般功能
近几年研制的高电压设备绝缘在线监测系统既能对带电设备的绝缘特性参数实时测量,又能对获取数据进行分析处理。一般具有以下功能
a测量避雷器在运行中的容性电流和阻性电流变化情况,掌握其内部绝缘受潮以及阀片老化情况。
b测量CVT、耦合电容器、电流互感器、套管等容性设备的泄漏电流和介质损耗,掌握其内部受潮和绝缘老化及损坏缺陷。
c测量充油设备绝缘油的内部可燃性气体变化情况,掌握设备内部有无过热、放电等缺陷情况。
d检测阻抗稳定,不受变电站强电磁干扰的影响,在系统操作过电压、雷电过电压作用下具有自保护性,不发生性能变化和软件损坏现象。
e检测信号传输好,不发生失真和对其附近的其他信号有影响,同时也不受其他信号的干扰。
f具有专家分析功能,智能化判断设备内部绝缘状态。 g系统分析数据能够远程传输,实现数据共享。
4 监测设备要点分析
4.1避雷器
目前变电站使用的氧化锌避雷器绝大部分不再有串联间隙,MOA运行期间总有一定的泄漏电流通过阀片,加速阀片老化;而受潮和老化是MOA阀片劣化的主要原因。检测MOA泄漏全电流和阻性电流能有效地反应MOA的绝缘状况,在电流测量反映整体严重受潮现象,早期老化时阻性电流增加较多,全电流变化则不明显。
在正常运行情况下,流过避雷器的主要电流为容性电流,阻性电流只占有很小的一部分,约为10%-20%左右。阻性分量主要包括:瓷套内、外表面的沿面泄漏,阀片沿面泄漏及其本身的非线性电阻分量,绝缘支撑件的泄漏等。当阀片老化、避雷器受潮、内部绝缘部件受损以及表面严重污秽时,容性电流变化不多,而阻性电流却大大增加。避雷器事故主要原因是阻性电流增大后,损耗增加,引起热击穿。所以测量交流泄漏电流及其有功分量是现场检测避雷器的主要方法,预防性试验规程也将氧化锌避雷器(MOA)"运行中泄漏电流"的测量列入预试项目。
4.2CVT、耦合电容器、电流互感器、套管等容性设备
测量CVT、耦合电容器、电流互感器、套管等容性设备介质损失角正切值是一项灵敏度很高的试验项目,它可以发现电气设备绝缘整体受潮、绝缘劣化以及局部缺陷。绝缘受潮缺陷占用电容型设备缺陷的85.4%,这是由于电容型结构是通过电容分布强制均压的,其绝缘利用系数较高,一旦绝缘受潮往往会引起绝缘介质损耗增加,导致击穿。绝缘最终击穿的发展速度非常快,然而绝缘劣化一般具有以下一些基本特征:
a 绝缘介质损耗值会增加,由此以及其他原因产生的热量最终可能导致绝缘的热击穿。测量绝缘损失角正切值(tgδ)可以检测介质损耗的变化。
b 绝缘中可能伴随有局部放电和树枝状电的发生。放电量很大的局放通常只是在有雷电或者操作过电压存在以及绝缘损坏的过程中才出现,通过tgδ测量可以反映由此产生的介质损耗。
c 绝缘特性受温度变化的影响增大。绝缘温度系数决定于绝缘本身的型式,大小和绝缘状况,对于特定的电压等级和绝缘设计,由于绝缘劣化导致温度系数的增加,tgδ值的温度非线性和灵敏度都会增加。因而,影响绝缘温度的所有因数(介质损耗、环境温度、负载变化等)对于老化的绝缘tgδ值的影响都更加显著。对于具有电容式绝缘的设备,通过其介电特性的检测可以发现尚处于比较早期发展阶段的缺陷。
研究表明,在缺陷发展的起始阶段,测量电流增加率和测量介质损耗正切值变化所得的结果一致,都具有很高的灵敏度;在缺陷发展的后期阶段,测量电流增加现象和电容变化的情况一致,更容易发现缺陷的发展情况。
|<12>>
4.3断路器设备
针对真空断路器、少油断路器、SF6断路器的在线监测比较特殊的是其电寿命监测部分与机械状态监测部分,断路器触头的电寿命以及其传动机构和储能机构的机械寿命是电气设备中两种比较特殊的参数,其触头、传动机构和储能机构的优良直接影响到断路器设备的性能及其电网稳定,一旦出现损坏或老化将造成断路器不能正常分(合)或断路器合闸触头发热高温产生爆炸等危险。针对两种参数一般采用监测开断次数配合计算公式推倒出其优良情况。
a 电寿命监测;对电寿命监测是建立杂触头累计磨损量模型基础上的。根据I—N曲线拟和的计算公式,按单次开断电流累计触头磨损量。
b 机械状态的监测;机械状态的监测主要监测其传动机构和储能机构。
储能机构监测的是储能电机的日储能次数,单次储能时间的长短,通过对这两个数据的采集和分析,可以说明储能系统是否出现泄漏或储能不够等。传动机构则是采用对合、分闸线圈电流波形,机械振动波形以及开关辅助接点波形的综合判断方法,具体如下:首先录下断路器正常状态下的机械振动"指波纹",如果传动机构出现裂纹、卡涩等问题,其震动频率会发生改变。由于正常情况下分、合闸线圈电流波形与异常时有很大的差别,如波形畸变,得电持续时间长等,因此通过对以上波形综合分析,就可以判断开关是否有机械隐患。对于断路器设备监测其电寿命和机械状态可以及早发现平时通过预防性试验所不能发现的缺陷,对断路器的安全稳定运行起到了相应的补充作用。
5 在线监测与状态检修
电力系统传统的运行维护工作,传统的做法是实行"计划检修"。"计划检修"就是按照高压电气设备预防性试验规程所规定的试验周期,到期必对电气设备进行停电检修。而状态检修则是基于设备的实际工况,根据其在运行电压下的绝缘特性参数的变化,通过分析比较来确定电气设备是否需要检修,以及需要检修的项目和内容,具有及强的针对性和实时性。因此,可以说"状态检修"就是"应修既修,修必修好"。
5.1计划检修的特点:
(1)周期性。计划检修是按照预防性试验规程所规定的试验周期,到期必修,具有很强的周期性。优点是便于工作计划的安排。缺点是它不管设备的实际状况,具有很大的盲目性和强制性,易造成设备的"过度检修",浪费了大量的人力物力,同时各种耐压试验又有可能对设备绝缘造成新的损伤,等等。
(2)短暂性。定期预防性试验只能检测某一时间设备的绝缘状态,不能适时检测设备的绝缘状态,无法确定设备何时出现绝缘缺陷,无法检测缺陷的发展状况,特别是设备内部发展速度快、易造成重大绝缘事故的缺陷,更是无法检测到。
(3)试验电压低。定期预防性试验的试验电压一般低于设备运行电压,所以定期预防性试验无法准确地检测出设备运行电压下的缺陷。
(4)降低了电网的供电可靠性。由于计划检修的定期预防性试验需要在设备停电下进行试验检测,增加了设备停电时间,必然影响电网的供电可靠性,同时供电部门也造成少供电量的损失。
5.2在线监测指导下状态检修的特点:
(1)实时性。高压设备在线监测技术对设备绝缘状态实时监测,不受设备运行情况和时间的限制,可以随时检测设备的绝缘状态,一旦设备出现缺陷,能及时发现并跟踪检测、处理,对保证电网安全更具意义。 (2)真实性。由于在线监测技术在设备运行电压和状态下的绝缘参数进行检测,检测结果符合实际情况,更加真实和全面。
(3)针对性更强。可根据绝缘缺陷的发展和变化来确定检修项目、内容和时间,检修目的明确,针对性更强。
(4)提高了设备供电可靠性。由于实行状态检修,减少了设备停电次数和时间,提高了设备供电可靠性,避免少供电损失,同时也提高了电力部门全员劳动生产率。
5.3在线监测技术指导下的状态检修与定期预防性试验技术指导下计划检修的比较与发展:
随着电力设备的大容量化、高电压化、结构多样化及密封化,对常规停电预防性试验而言,传统的简易诊断方法已显得不太适应,主要表现在:
1、随着供电可靠需求不断提高,定期将电气设备停电进行预防性试验变得越来越困难,特别是重要的变电站常常出现超期试验的情况,这对保证电气设备安全稳定的运行留下了一定的隐患;
2、南方电网下发的新规程和标准的实施将预防性试验的周期做了很大的调整,延长了试验周期,这对我们高压预防性试验提出了一个新的要求,是不是采用现有的试验项目和方法可以保证在只一个周期内不发生故障;
3、现阶段高电压等级的电气设备和新型的电气设备在不断的投入运行,然而我们所采用的预防性试验方法是采用一个较低的电压模拟高电压下电气设备的各种运行情况,达不到一个真实性,不能正确反映出电气设备的优良情况;针对近年来投入广泛应用的干式穿墙套管在试验中所采集的数据基本上完全不能正确的反映其优良情况;另外由于近期对主变的试验中将主变套管的油化验试验取消了,然而高压试验又只能在一个较长的试验周期中对其进行试验,对主变套管这种设备的有效检测达不到一个必要的要求。高电压设备绝缘在线监测技术的应用,是实现状态检修的有效手段之一。在线检测是在运行电压下对设备的绝缘状态进行检测,真实反应设备绝缘水平。
现阶段部分供电系统均采用在线监测技术来作为常规停电预防性试验的补充,取得了很好的成效,有效的将常规停电预防性试验的周期进行了延长。在线监测技术通过自动连续检测状态下,依据大量的数据和曲线分析设备绝缘状态的变化趋势,从变化趋势中寻找危险征兆,从多项检测结果来综合判断运行设备状况,其分析结果和数据可直接传输至上级主管部门,真正做到设备"该修则修,修必修好",避免不必要的人力,物力浪费。在线监测技术的应用有利于从"定期维修"制(计划维修)过渡到 "状态维修"制(预知维修)。利用绝缘在线监测技术实现状态维修可以实现:
(1)有效避免周期性计划检修带来的弊端,合理安排生产和检修,做到该修必修,从而节约大量的设备维修资金和停电检修时间,使现有的运行设备创造更大的安全和经济效益。
(2)减少设备停电试验和维修的盲目性,减少了设备因检修而引发故障的可能性, 延长了设备运行寿命,使设备维护更加科学。
(3)大大减少停电时间和开关操作量,提高电力系统的供电可靠性、经济性和安全性。
(4)持续、准确反映设备在运行电压下的绝缘性能和健康水平,能够及时发现设备运行中的发展性绝缘缺陷,防止突发性绝缘事故发生,有效提高设备运行水平和可靠性,降低设备事故率,显著减少突发性事故。
(5)在定期维修朝状态维修发展的进程中,绝缘在线监测技术可作为弥补定期预防性试验不足的有效手段。将在线监测和预试结合起来,根据在线监测的结果合理安排预试,延长预试大修周期,是逐渐推行状态维修的有效途径。
现阶段特别是针对电容型设备的在线监测技术得到了广泛的应用,从技术手段上来说已经完全可以取代常规停电预防性试验。状态检修的基础是要实时掌握和了解设备在带电工况下的绝缘参数,在线监测技术则是获得设备在带电工况下的绝缘参数的唯一途径。通过在运行电压下实时监测绝缘的各种状态参量并对这些量的变化量进行分析比较,来确定是否对设备进行检修。近几年来高电压设备的制造质量和水平有了很大提高,也为状态检修提供了更好条件,状态检修的优势也更加明显。
6 问题讨论电气设备绝缘在线监测技术的推广应用,对电气设备的安全运行起到了积极作用,供电部门积极推行状态检修,减轻了设备检修工作量,提高了电网运行的可靠性。但是,由于技术的复杂性和电气设备的多样性,尚有一些问题值得研究和商鹤。
(1)传感器的特性和质量是在线监测的关键。目前常用线圈式传感器,易受温度、压力、冲击等外界环境的影响,是影响测试精度和稳定性的重要因素。所以研制高精度、高稳定的传感器仍是在线监测的一个研究课题。
(2)干扰问题。由于高压电气设备处在强电场环境中,使微量信号的采集难度增大。
(3)对设备制造厂家提出在线监测技术要求。目前的高压电气设备均未考虑在线监测问题,都是在线监测设备厂家针对运行站内设备情况进行设计并安装。运行设备有的可以安装和抽取信号,有的则不能。
(4)积累运行经验,完善专家系统,制定监测标准。高压电气设备绝缘在线监测的绝缘参数往往与停电测试结果有一个"偏差",但这个"偏差"往往存在一定规律,只要积累数据,加以分析就不难发现,并可以此为依据对照预防性试验标准设定报警值,当设备绝缘参数超越报警值时,系统自动报警。完善专家系统,建立数据库,强化分析功能,制定监测标准仍是目前亟待解决的问题。
(5)积极推行状态检修。在积累运行经验的基础上,实施状态检修,提高电网可靠性,减少检修工作量,又反过来推动在线监测技术的发展。
7 结论
高压电气设备绝缘在线监测技术能够及时发现和检测出设备内部绝缘状态的变化,对设备绝缘故障及时处理,保证电网的安全运行。在线监测技术是供电单位实行状态检修的基础和唯一技术手段。应当进一步推广使用绝缘在线监测技术,积累运行经验,积极推行电气设备状态检修。现阶段无线通讯技术、计算机技术、传感器技术的发展为高压电气设备绝缘在线监测技术的发展提供了有力的保证,为实施超高压电力线路绝缘子等以前没有研究与开展的在线监测技术提供了条件。我局也在此良机下大力开展在线监测技术,通过逐步试点到最后的推广,最终达到全局变电站都能采用在线监测技术,解决定期停电预防性试验的种种缺点,保证电网能在最好的状态下安全、稳定的运行。
参考文献:
1.《Q/CSG 1 0007—2004电力设备预防性试验规程》 中国南方电网有限责任公司发布
2.严璋 《电气绝缘在线监测技术》 北京电力出版社,1995年 3.关根志、贺景亮 《电气设备的绝缘在线监测与状态维护》 武汉水利电力大学 ,2002年